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• No electronic aids

• No books, notebooks or scrap paper are permitted.

• Answer all questions in the booklet provided

• Show your work and justify your answers for full credit.

1. Recall the Petersen graph G = (V,E): the vertices V are all sets of 2 elements {a, b} for a, b ∈ {1, . . . , 5}.
(a) Draw this graph.

Solution:

(b) consider a vertex coloring V −→ {1, 2}. Show that there exist two adjacent vertices with the same
color.

Solution: As we know, a proper coloring is the same as partitioning the vertices into two
independent subsets (those with color 1 and 2 resp.), in other words, a bipartition. Konig’s
theorem now guarantees the existence of such a subdivision if and only if the graph has no odd
length cycle. However, we clearly see a cycle of length 5!

Alternatively, you can also just pick a vertex and argue why you will always get stuck at
some point in the construction of a 2-coloring by hand.

(c) We now consider a vertex coloring V −→ {1, 2, 3} through the following rule: the vertex {a, b} has
color 1 if the smallest element is 1, it has color 2 if the smallest element is 2 and 3 otherwise. Draw
the colors on the graph.



Solution: This coloring is displayed on the graph above.

(d) recall that the chromatic number χ is the smallest amount of colors necessary such that there
exists a coloring where no adjacent vertices have the same color. What is the chromatic number of
Petersen graph?

Solution: Point (b) demonstrates that this number is strictly larger that 2 and point (c) shows
that the number is at most 3. The answer is thus 3.

2. Let M be an m× n-matrix with entries in {0, 1}.
To M , we associate a graph G = (V,E) as follows: consider vertex sets V = {x1 . . . xm} ∪ {y1, . . . yn}
and add an edge e ∈ E between vertices xi and yj if Mi,j = 1.

(a) Draw the graph associated to 1 0 1 0
0 1 1 0
1 0 0 0


Solution:

x1 x2 x3

y1 y2 y3 y4

(b) State Kónig’s theorem for bipartite graphs:

Solution: In a bipartite graph, the size of a maximal matching set of edges coincides with the
size of a minimal vertex cover. (alternatively, many people also answered: a graph is bipartite
if and only if it has no odd length cycles, this is also correct)

(c) Let a line be either a row or column.
Use the above to show that the following two numbers coincide:

• the size of the smallest set of lines in which each entry 1 appears in some line

• the size of the largest set of 1’s in the matrix no two of which appear on the same line.

Solution: Let us denote a line (i.e. row or column) by its corresponding vertex: row i corre-
sponds to vertex xi and column j corresponds to vertex yj . The nonzero entries in a line then
correspond to edges are adjacent to said vertex.
By the above correspondence, a choice S of lines that contains all 1’s in the matrix now corre-
sponds to choice of vertices S such that each edge in the graph is adjacent to some vertex in
S: a vertex cover.
Similarly, a choice of 1’s no two of which lie on the same line in turn corresponds to a choice
of edges no two of which are adjacent to the same vertex: a matching.. The result now follows
from Konig’s theorem stated above
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(d) find this number for the matrix in the above example

Solution: We simply need to find a minimal vertex cover (or alternatively a maximal matching)
in the above graph. Clearly {x1, x2, x3} is such a cover. The number is thus 3.

3. Consider the following network:
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(a) perform the Ford-Fulkerton algorithm to find a maximum flow

(b) find a minimum cut

Solution: This was discussed in class . The result of the algorithm is the following network:
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As this clearly yields a flow whose residual graph is acyclic. The max-flow equals the min-cut
with a value of 5. By letting S = {s, b} and T{a, t}, we see that ||S, T || = 5

4. (a) State Menger’s theorem:

Solution: Let u, v be two distinct vertices. Then the minimal size of a edge cut for u, v
coincides with the largest size of a set of edge-disjoint u− v paths.
Or: the minimal size of a vertex cut for two nonadjacent vertices u, v coincides with the largest
size of internally disjoint u− v-paths.
Or: the minimal size of an edge cut in a graph equals the maximal size of edge-disjoint paths
in the graph.

(b) verify Menger’s theorem on the following graph:
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Solution: Clearly, any u, v-path would have to go through one of the non-labeled vertices, and
for each such vertex there is exactly one path. There are 4 edge-disjoint paths. Similarly, each
of these 4 paths would have to be removed to disconnet u and v. This can be done by picking
an edge for each path. The size of a minimal edge cut is thus 4 as well.

5. Assume 2m people participate in a chess tournament. They all play one opponent once over the course
of 2m− 1 days. Let G be the bipartite graph with edge set X ∪ Y where X represents the 2m− 1 days
and Y represents the 2m players. Connect a day with a player by an edge if the player won his game
that day.

(a) State the marriage condition for this problem.

Solution: The marriage condition states in general that for any subset W ⊂ X and Γ(W ) =
{v ∈ Y |∃u ∈W : uv ∈ E(G)}, we have

Γ(W ) ≤W

In this particular case, W is a set of days, and Γ(W ) is the set of players that are adjacent
to the days in W . Since we connect players with days if they won on that day, the marriage
condition simply states that during any period of k days, there are at least k players who won
in that period.

(b) Argue (by contradiction) that the marriage condition is satisfied

Solution: Assume the condition isn’t satisfied.
Then for some choice of k days, less that k people won a game during that period. In particular
there is some person who lost all of his k games during that period..This means that k different
people won however! A contradiction..

(c) What can you conclude about the tournament? The graph that represents this tournament has a
perfect matching. Ie: we can list a winning player for each day of the tournament without repeating
players

6. Answer with true or false (and give an argument/counterexample when necessary)

(a) the graph below has a path where each edge appears exactly once:

Solution: This is true: consider the path

e1, e4, e8, e9, e5, e6, e7, e3, e2

(b) given a network with capacities ∈ Z, the Ford-Fulkerton algorithm always finds a maximum flow.
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Solution: This is true as well: indeed, the FF algorithm increases the value of the flow at each
step. This value remains a positive integer. We now note that the value of any flow is always
bounded by the value of a cut

(c) A cycle of length ≥ 3 becomes disconnected after removing 1 edge:

Solution: This is not true as it is known that any cycle remains connected after removing an
edge by Konig’s theorem

(d) A cycle of length ≥ 3 becomes disconnected after removing 2 edges.

Solution: This is true in the case where the two edges are not adjacent.
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